
Pranking with RankingKoby Crammer and Yoram SingerShool of Computer Siene & EngineeringThe Hebrew University, Jerusalem 91904, Israelfkobis,singerg�s.huji.a.ilAbstratWe disuss the problem of ranking instanes. In our frameworkeah instane is assoiated with a rank or a rating, whih is aninteger from 1 to k. Our goal is to �nd a rank-predition rule thatassigns eah instane a rank whih is as lose as possible to theinstane's true rank. We desribe a simple and eÆient online al-gorithm, analyze its performane in the mistake bound model, andprove its orretness. We desribe two sets of experiments, withsyntheti data and with the EahMovie dataset for ollaborative�ltering. In the experiments we performed, our algorithm outper-forms online algorithms for regression and lassi�ation applied toranking.1 IntrodutionThe ranking problem we disuss in this paper shares ommon properties with bothlassi�ation and regression problems. As in lassi�ation problems the goal is toassign one of k possible labels to a new instane. Similar to regression problems,the set of k labels is strutured as there is a total order relation between the labels.We refer to the labels as ranks and without loss of generality assume that the ranksonstitute the set f1; 2; : : : ; kg. Settings in whih it is natural to rank or rate in-stanes rather than lassify are ommon in tasks suh as information retrieval andollaborative �ltering. We use the latter as our running example. In ollaborative�ltering the goal is to predit a user's rating on new items suh as books or moviesgiven the user's past ratings of the similar items. The goal is to determine whethera movie fan will like a new movie and to what degree, whih is expressed as arank. An example for possible ratings might be, run-to-see, very-good, good,only-if-you-must, and do-not-bother. While the di�erent ratings arry mean-ingful semantis, from a learning-theoreti point of view we model the ratings as atotally ordered set (whose size is 5 in the example above).The interest in ordering or ranking of objets is by no means new and is still thesoure of ongoing researh in many �elds suh mathematial eonomis, soial si-ene, and omputer siene. Due to lak of spae we learly annot over thoroughlyprevious work related to ranking. For a short overview from a learning-theoretipoint of view see [1℄ and the referenes therein. One of the main results of [1℄ un-dersores a omplexity gap between lassi�ation learning and ranking learning. Tosidestep the inherent intratability problems of ranking learning several approaheshave been suggested. One possible approah is to ast a ranking problem as aregression problem. Another approah is to redue a total order into a set of pref-



� �� � �

3UHGLFWHG�UDQN &RUUHFW�LQWHUYDO &RUUHFW�LQWHUYDO

� �� �

8SGDWHG�SUHGLFWHG�UDQN &RUUHFW�LQWHUYDO

�Figure 1: An Illustration of the update rule.erenes over pairs [3, 5℄. The �rst ase imposes a metri on the set of ranking ruleswhih might not be realisti, while the seond approah is time onsuming sine itrequires inreasing the sample size from n to O(n2).In this paper we onsider an alternative approah that diretly maintains a totallyordered set via projetions. Our starting point is similar to that of Herbrih et. al [5℄in the sense that we projet eah instane into the reals. However, our work thendeviates and operates diretly on rankings by assoiating eah ranking with distintsub-interval of the reals and adapting the support of eah sub-interval while learn-ing. In the next setion we desribe a simple and eÆient online algorithm thatmanipulates onurrently the diretion onto whih we projet the instanes andthe division into sub-intervals. In Se. 3 we prove the orretness of the algorithmand analyze its performane in the mistake bound model. We desribe in Se. 4experiments that ompare the algorithm to online algorithms for lassi�ation andregression applied to ranking whih demonstrate the merits of our approah.2 The PRank AlgorithmThis paper fouses on online algorithms for ranking instanes. We are given asequene (x1; y1); : : : ; (xt; yt); : : : of instane-rank pairs. Eah instane xt is in Rnand its orresponding rank yt is an element from �nite set Y with a total orderrelation. We assume without loss of generality that Y = f1; 2; : : : ; kg with \>"as the order relation. The total order over the set Y indues a partial order overthe instanes in the following natural sense. We say that xt is preferred over xsif yt > ys. We also say that xt and xs are not omparable if neither yt > ys noryt < ys. We denote this ase simply as yt = ys. Note that the indued partial orderis of a unique form in whih the instanes form k equivalene lasses whih are totallyordered1. A ranking rule H is a mapping from instanes to ranks, H : Rn ! Y .The family of ranking rules we disuss in this paper employs a vetor w 2 Rn anda set of k thresholds b1 � : : : � bk�1 � bk = 1. For onveniene we denote byb = (b1; : : : ; bk�1) the vetor of thresholds exluding bk whih is �xed to1. Given anew instane x the ranking rule �rst omputes the inner-produt between w and x.The predited rank is then de�ned to be the index of the �rst (smallest) thresholdbr for whih w � x < br. This type of ranking rules divide the spae into parallelequally-ranked regions: all the instanes that satisfy br�1 < w �x < br are assignedthe same rank r. Formally, given a ranking rule de�ned by w and b the preditedrank of an instane x is, H(x) = minr2f1;:::;kgfr : w � x � br < 0g. Note that theabove minimum is always well de�ned sine we set bk =1.The analysis that we use in this paper is based on the mistake bound model foronline learning. The algorithm we desribe works in rounds. On round t the learningalgorithm gets an instane xt. Given xt, the algorithm outputs a rank, ŷt = minrfr :w �x� br < 0g. It then reeives the orret rank yt and updates its ranking rule bymodifying w and b. We say that our algorithm made a ranking mistake if ŷt 6= yt.1For a disussion of this type of partial orders see [6℄.



Initialize: Set w1 = 0 ; b11; : : : ; b1k�1 = 0; b1k =1 .Loop: For t = 1; 2; : : : ; T� Get a new rank-value xt 2 Rn.� Predit ŷt = minr2f1;:::;kgfr : wt � xt � btr < 0g.� Get a new label yt.� If ŷt 6= yt update wt (otherwise set wt+1 = wt ; 8r : bt+1r = btr) :1. For r = 1; : : : ; k � 1 : If yt � r Then ytr = �1Else ytr = 1.2. For r = 1; : : : ; k � 1 : If (wt � xt � btr)ytr � 0 Then � tr = ytrElse � tr = 0.3. Update wt+1  wt + (Pr � tr)xt.For r = 1; : : : ; k � 1 update: bt+1r  btr � � trOutput : H(x) = minr2f1;:::;kgfr : wT+1 � x� bT+1r < 0g.Figure 2: The PRank algorithm.We wish to make the predited rank as lose as possible to the true rank. Formally,the goal of the learning algorithm is to minimize the ranking-loss whih is de�ned tobe the number of thresholds between the true rank and the predited rank. Usingthe representation of ranks as integers in f1 : : : kg, the ranking-loss after T roundsis equal to the aumulated di�erene between the predited and true rank-values,PTt=1 jŷt � ytj. The algorithm we desribe updates its ranking rule only on roundson whih it made ranking mistakes. Suh algorithms are alled onservative.We now desribe the update rule of the algorithm whih is motivated by the per-eptron algorithm for lassi�ation and hene we all it the PRank algorithm (forPereptron Ranking). For simpliity, we omit the index of the round when refer-ring to an input instane-rank pair (x; y) and the ranking rule w and b. Sineb1 � b2 � : : : � bk�1 � bk then the predited rank is orret if w � x > br forr = 1; : : : ; y � 1 and w � x < br for y; : : : ; k � 1. We represent the above inequali-ties by expanding the rank y into into k � 1 virtual variables y1; : : : ; yk�1. We setyr = +1 for the ase w � x > br and yr = �1 for w � x < br. Put another way, arank value y indues the vetor (y1; : : : ; yk�1) = (+1; : : : ;+1;�1; : : : ;�1) where themaximal index r for whih yr = +1 is y�1. Thus, the predition of a ranking rule isorret if yr(w �x� br) > 0 for all r. If the algorithm makes a mistake by ranking xas ŷ instead of y then there is at least one threshold, indexed r, for whih the valueof w �x is on the wrong side of br, i.e. yr(w �x� br) � 0. To orret the mistake, weneed to \move" the values of w �x and br toward eah other. We do so by modifyingonly the values of the br's for whih yr(w �x�br) � 0 and replae them with br�yr.We also replae the value of w with w + (P yr)x where the sum is taken over theindies r for whih there was a predition error, i.e., yr(w � x� br) � 0.An illustration of the update rule is given in Fig 1. In the example, we used theset Y = f1 : : :5g. (Note that b5 = 1 is omitted from all the plots in Fig 1.) Theorret rank of the instane is y = 4, and thus the value of w � x should fall in thefourth interval, between b3 and b4. However, in the illustration the value of w � xfell below b1 and the predited rank is ŷ = 1. The threshold values b1; b2 and b3 area soure of the error sine the value of b1; b2; b3 is higher then w � x. To mend themistake the algorithm dereases b1; b2 and b3 by a unit value and replae them withb1�1; b2�1 and b3�1. It also modi�es w to be w+3x sinePr:yr(w�x�br)�0 yr = 3.Thus, the inner-produt w � x inreases by 3kxk2. This update is illustrated at themiddle plot of Fig. 1. The updated predition rule is skethed on the right hand



side of Fig. 1. Note that after the update, the predited rank of x is ŷ = 3 whih isloser to the true rank y = 4. The pseudoode of algorithm is given in Fig 2.To onlude this setion we like to note that PRank an be straightforwardly om-bined with Merer kernels [8℄ and voting tehniques [4℄ often used for improving theperformane of margin lassi�ers in bath and online settings.3 AnalysisBefore we prove the mistake bound of the algorithm we �rst show that it main-tains a onsistent hypothesis in the sense that it preserves the orret order of thethresholds. Spei�ally, we show by indution that for any ranking rule that anbe derived by the algorithm along its run, (w1;b1) ; : : : ; (wT+1;bT+1) we havethat btr � : : : � btk�1 for all t. Sine the initialization of the thresholds is suh thatb11 � b12 � : : : � b1k�1, then it suÆes to show that the laim holds indutively. Forsimpliity, we write the updating rule of PRank in an alternative form. Let [[�℄℄ be1 if the prediate � holds and 0 otherwise. We now rewrite the value of � tr (fromFig. 2) as � tr = ytr[[(wt � xt � btr)ytr � 0℄℄. Note that the values of btr are integers forall r and t sine for all r we initialize b1r = 0, and bt+1r � btr 2 f�1; 0;+1g.Lemma 1 (Order Preservation) Let wt and bt be the urrent ranking rule,where bt1 � : : : � btk�1, and let (xt; yt) be an instane-rank pair fed to PRankon round t. Denote by wt+1 and bt+1 the resulting ranking rule after the update ofPRank, then bt+11 � : : : � bt+1k�1.Proof: In order to show that PRank maintains the order of the thresholds weuse the de�nition of the algorithm for ytr, namely we de�ne ytr = +1 for r < yt andytr = �1 for r � yt. We now prove that bt+1r+1 � bt+1r for all r by showing thatbtr+1 � btr � ytr+1[[(wt � xt � btr+1)ytr+1 � 0℄℄� ytr[[(wt � xt � btr)ytr � 0℄℄ ; (1)whih we obtain by substituting the values of bt+1. Sine btr+1 � btr and btr ; btr+1 2 Zwe get that the value of btr+1 � btr on the left hand side of Eq. (1) is a non-negativeinteger. Reall that ytr = 1 if yt > r and ytr = �1 otherwise, and therefore,ytr+1 � ytr. We now analyze two ases. We �rst onsider the ase ytr+1 6= ytr whihimplies that ytr+1 = �1; ytr = +1. In this ase, the right hand-side of Eq. (1) is atmost zero, and the laim trivially holds. The other ase is when ytr+1 = ytr. Herewe get that the value of the right hand-side Eq. (1) annot exeed 1. We thereforehave to onsider only the ase where btr = btr+1 and ytr+1 = ytr. But given these twoonditions we have that ytr+1[[(wt � xt � btr+1)ytr+1 < 0℄℄ and ytr[[(wt � xt � btr)ytr < 0℄℄are equal. The right hand side of Eq. (1) is now zero and the inequality holds withequality.In order to simplify the analysis of the algorithm we introdue the following nota-tion. Given a hyperplanew and a set of k�1 thresholds b we denote by v 2 Rn+k�1the vetor whih is a onatenation ofw and b that is v = (w;b). For brevity we re-fer to the vetor v as a ranking rule. Given two vetors v0 = (w0;b0) and v = (w;b)we have v0 � v = w0 �w+ b0 � b and kvk2 = kwk2 + kbk2.Theorem 2 (Mistake bound) Let (x1; y1); : : : ; (xT ; yT ) be an input sequene forPRank where xt 2 Rn and yt 2 f1 : : : kg. Denote by R2 = maxt kxtk2. Assumethat there is a ranking rule v� = (w�;b�) with b�1 � : : : � b�k�1 of a unit norm thatlassi�es the entire sequene orretly with margin  = minr;tf(w� �xt� b�r)ytrg > 0.Then, the rank loss of the algorithm PTt=1 jŷt�ytj, is at most (k � 1)(R2 + 1)=2.



Proof: Let us �x an example (xt; yt) whih the algorithm reeived on round t.By de�nition the algorithm ranked the example using the ranking rule vt whih isomposed of wt and the thresholds bt. Similarly, we denote by vt+1 the updatedrule (wt+1;bt+1) after round t. That is, wt+1 = wt+(Pr � tr)xt and bt+1r = btr� � trfor r = 1; 2; : : : ; k�1. Let us denote by nt = jŷt�ytj the di�erene between the truerank and the predited rank. It is straightforward to verify that nt =Pr j� tr j. Notethat if there wasn't a ranking mistake on round t then � tr = 0 for r = 1; : : : ; k�1, andthus also nt = 0. To prove the theorem we bound Pt nt from above by boundingkvtk2 from above and below. First, we derive a lower bound on kvtk2 by boundingv� � vt+1. Substituting the values of wt+1 and bt+1 we get,v� � vt+1 = v� � vt + k�1Xr=1 � tr �w� � xt � b�r� (2)We further bound the right term by onsidering two ases. Using the de�nition of� tr from the pseudoode in Fig. 2 we need to analyze two ases. If (wt �xt�btr)ytr � 0then � tr = ytr. Using the assumption that v� ranks the data orretly with a marginof at least  we get that � tr(w� � xt � b�r) � . For the other ase for whih(wt � xt � btr)ytr > 0 we have � tr = 0 and thus � tr(w� � xt � b�r) = 0. Summingnow over r we get, k�1Xr=1 � tr �w� � xt � b�r� � nt : (3)Combining Eq. (2) and Eq. (3) we get v� � vt+1 � v� � vt + nt. Unfolding thesum, we get that after T rounds the algorithm satis�es, v� � vT+1 � Pt nt =Pt nt. Plugging this result into Cauhy-Shwartz inequality, (kvT+1k2kv�k2 ��vT+1 � v��2) and using the assumption that v� is of a unit norm we get the lowerbound, kvT+1k2 � (Pt nt)2 2.Next, we bound the norm of v from above. As before, assume that an example(xt; yt) was ranked using the ranking rule vt and denote by vt+1 the ranking ruleafter the round. We now expand the values ofwt+1 and bt+1 in the norm of vt+1 andget, kvt+1k2 = kwtk2 + kbtk2 + 2Pr � tr (wt � xt � btr) + (Pr � tr)2kxtk2 +Pr (� tr)2.Sine � tr 2 f�1; 0;+1g we have that (Pr � tr)2 � (nt)2 and Pr(� tr)2 = nt and wetherefore get,kvt+1k2 � kvtk2 + 2Xr � tr �wt � xt � btr�+ (nt)2kxtk2 + nt : (4)We further develop the seond term using the update rule of the algorithm and get,Xr � tr �wt � xt � btr� =Xr [[(wt � xt � btr)ytr � 0℄℄ �(wt � xt � btr)ytr� � 0 : (5)Plugging Eq. (5) into Eq. (4) and using the bound kxtk2 � R2 we get thatkvt+1k2 � kvtk2 + (nt)2R2 + nt. Thus, the ranking rule we obtain after T roundsof the algorithm satis�es the upper bound, kvT+1k2 � R2Pt(nt)2 +Pt nt. Com-bining the lower bound kvT+1k2 � (Pt nt)2 2 with the upper bound we have that,(Pt nt)2 2 � kvT+1k2 � R2Pt(nt)2 +Pt nt. Dividing both sides by 2Pt nt we�nally get, Xt nt � R2 �Pt(nt)2� = [Pt nt℄ + 12 : (6)By de�nition, nt is at most k � 1, whih implies that Pt(nt)2 � Pt nt(k � 1) =(k�1)Pt nt. Using this inequality in Eq. (6) we get the desired bound,PTt=1 jŷt�ytj =PTt=1 nt � [(k � 1)R2 + 1℄=2 � [(k � 1)(R2 + 1)℄=2 :
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Figure 3: Comparison of the time-averaged ranking-loss of PRank, WH, and MCPon syntheti data (left). Comparison of the time-averaged ranking-loss of PRank,WH, and MCP on the EahMovie dataset using viewers who rated and at least 200movies (middle) and at least 100 movies (right).4 ExperimentsIn this setion we desribe experiments we performed that ompared PRank withtwo other online learning algorithms applied to ranking: a multilass generalizationof the pereptron algorithm [2℄, denoted MCP, and the Widrow-Ho� [9℄ algorithmfor online regression learning whih we denote by WH. For WH we �xed its learningrate to a onstant value. The hypotheses the three algorithms maintain sharesimilarities but are di�erent in their omplexity: PRank maintains a vetor w ofdimension n and a vetor of k � 1 modi�able thresholds b, totaling n + k � 1parameters; MCP maintains k prototypes whih are vetors of size n, yielding knparameters; WH maintains a single vetor w of size n. Therefore, MCP builds themost omplex hypothesis of the three while WH builds the simplest.Due to the lak of spae, we only desribe two sets of experiments with two di�erentdatasets. The dataset used in the �rst experiment is syntheti and was generated ina similar way to the dataset used by Herbrih et. al. [5℄. We �rst generated randompoints x = (x1; x2) uniformly at random from the unit square [0; 1℄2. Eah pointwas assigned a rank y from the set f1; : : : ; 5g aording to the following ranking rule,y = maxrfr : 10((x1 � 0:5)(x2 � 0:5)) + � > brg where b = (�1;�1;�0:1; 0:25; 1)and � is a normally distributed noise of a zero mean and a standard deviationof 0.125. We generated 100 sequenes of instane-rank pairs eah of length 7000.We fed the sequenes to the three algorithms and obtained a predition for eahinstane. We onverted the real-valued preditions of WH into ranks by roundingeah predition to its losest rank value. As in [5℄ we used a non-homogeneouspolynomial of degree 2, K(x1;x2) = ((x1 � x2) + 1)2 as the inner-produt operationbetween eah input instane and the hyperplanes the three algorithms maintain.At eah time step, we omputed for eah algorithm the aumulated ranking-lossnormalized by the instantaneous sequene length. Formally, the time-averaged lossafter T rounds is, (1=T )PTt jŷt�ytj. We omputed these losses for T = 1; : : : ; 7000.To inrease the statistial signi�ane of the results we repeated the proess 100times, piking a new random instane-rank sequene of length 7; 000 eah time, andaveraging the instantaneous losses aross the 100 runs. The results are depitedon the left hand side of Fig. 3. The 95% on�dene intervals are smaller then thesymbols used in the plot. In this experiment the performane of MPC is onstantlyworse than the performane of WH and PRank. WH initially su�ers the smallestinstantaneous loss but after about 500 rounds PRank ahieves the best performaneand eventually the number of ranking mistakes that PRank su�ers is signi�antlylower than both WH and MPC.



In the seond set of experiments we used the EahMovie dataset [7℄. This datasetis used for ollaborative �ltering tasks and ontains ratings of movies providedby 61; 265 people. Eah person in the dataset viewed a subset of movies from aolletion of 1623 titles. Eah viewer rated eah movie that she saw using one of6 possible ratings: 0; 0:2; 0:4; 0:6; 0:8; 1. We hose subsets of people who viewed asigni�ant amount of movies extrating for evaluation people who have rated atleast 100 movies. There were 7; 542 suh viewers. We hose at random one personamong these viewers and set the person's ratings to be the target rank. We used theratings of all the rest of the people who viewed enough movies as features. Thus,the goal is to learn to predit the \taste" of a random user using the user's pastratings as a feedbak and the ratings of fellow viewers as features. The preditionrule assoiates a weight with eah fellow viewer an therefore an be seen as learningorrelations between the tastes of di�erent viewers. Next, we subtrated 0:5 fromeah rating and therefore the possible ratings are �0:5;�0:3;�0:1; 0:1; 0:3; 0:5. Thislinear transformation enabled us to assign a value of zero to movies whih have notbeen rated. We fed these feature-rank pairs one at a time, in an online fashion.Sine we piked viewer who rated at least 100 movies, we were able to perform atleast 100 rounds of online preditions and updates. We repeated this experiment500 times, hoosing eah time a random viewer for the target rank. The results areshown on the right hand-side of Fig. 3. The error bars in the plot indiate 95%ond�dene levels. We repeated the experiment using viewers who have seen atleast 200 movies. (There were 1802 suh viewers.) The results of this experimentare shown in the middle plot of Fig. 3. Along the entire run of the algorithms,PRank is signi�antly better than WH, and onsistently better than the multilasspereptron algorithm, although the latter employs a bigger hypothesis.Finally, we have also evaluated the performane of PRank in a bath setting, usingthe experimental setup of [5℄. In this experiment, we ran PRank over the trainingdata as an online algorithm and used its last hypothesis to rank unseen test data.Here as well PRank ame out �rst, outperforming all the algorithms desribed in [5℄.Aknowledgments Thanks to Sanjoy Dagupta and Rob Shapire for numerousdisussions on ranking problems and algorithms. Thanks also to Eleazar Eskin andUri Maoz for arefully reading the manusript.Referenes[1℄ William W. Cohen, Robert E. Shapire, and Yoram Singer. Learning to order things.Journal of Arti�ial Intelligene Researh, 10:243{270, 1999.[2℄ K. Crammer and Y. Singer. Ultraonservative online algorithms for multilass prob-lems. Pro. of the Fourteenth Annual Conf. on Computational Learning Theory, 2001.[3℄ Y. Freund, R. Iyer, R. E. Shapire, and Y. Singer. An eÆient boosting algorithm forombining preferenes. Mahine Learning: Pro. of the Fifteenth Intl. Conf., 1998.[4℄ Y. Freund and R. E. Shapire. Large margin lassi�ation using the pereptron algo-rithm. Mahine Learning, 37(3): 277-296, 1999.[5℄ R. Herbrih, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinalregression. Advanes in Large Margin Classi�ers. MIT Press, 2000.[6℄ J. Kemeny and J. Snell. Mathematial Models in the Soial Sienes. MIT Press, 1962.[7℄ Paul MJones. EahMovie ollaborative �ltering data set. DEC Systems ResearhCenter, 1997. http://www.researh.digital.om/SRC/eahmovie/.[8℄ Vladimir N. Vapnik. Statistial Learning Theory. Wiley, 1998.[9℄ Bernard Widrow and Marian E. Ho�. Adaptive swithing iruits. 1960 IREWESCON Convention Reord, 1960. Reprinted in Neuroomputing (MIT Press, 1988).


