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.ilAbstra
tWe dis
uss the problem of ranking instan
es. In our frameworkea
h instan
e is asso
iated with a rank or a rating, whi
h is aninteger from 1 to k. Our goal is to �nd a rank-predi
tion rule thatassigns ea
h instan
e a rank whi
h is as 
lose as possible to theinstan
e's true rank. We des
ribe a simple and eÆ
ient online al-gorithm, analyze its performan
e in the mistake bound model, andprove its 
orre
tness. We des
ribe two sets of experiments, withsyntheti
 data and with the Ea
hMovie dataset for 
ollaborative�ltering. In the experiments we performed, our algorithm outper-forms online algorithms for regression and 
lassi�
ation applied toranking.1 Introdu
tionThe ranking problem we dis
uss in this paper shares 
ommon properties with both
lassi�
ation and regression problems. As in 
lassi�
ation problems the goal is toassign one of k possible labels to a new instan
e. Similar to regression problems,the set of k labels is stru
tured as there is a total order relation between the labels.We refer to the labels as ranks and without loss of generality assume that the ranks
onstitute the set f1; 2; : : : ; kg. Settings in whi
h it is natural to rank or rate in-stan
es rather than 
lassify are 
ommon in tasks su
h as information retrieval and
ollaborative �ltering. We use the latter as our running example. In 
ollaborative�ltering the goal is to predi
t a user's rating on new items su
h as books or moviesgiven the user's past ratings of the similar items. The goal is to determine whethera movie fan will like a new movie and to what degree, whi
h is expressed as arank. An example for possible ratings might be, run-to-see, very-good, good,only-if-you-must, and do-not-bother. While the di�erent ratings 
arry mean-ingful semanti
s, from a learning-theoreti
 point of view we model the ratings as atotally ordered set (whose size is 5 in the example above).The interest in ordering or ranking of obje
ts is by no means new and is still thesour
e of ongoing resear
h in many �elds su
h mathemati
al e
onomi
s, so
ial s
i-en
e, and 
omputer s
ien
e. Due to la
k of spa
e we 
learly 
annot 
over thoroughlyprevious work related to ranking. For a short overview from a learning-theoreti
point of view see [1℄ and the referen
es therein. One of the main results of [1℄ un-ders
ores a 
omplexity gap between 
lassi�
ation learning and ranking learning. Tosidestep the inherent intra
tability problems of ranking learning several approa
heshave been suggested. One possible approa
h is to 
ast a ranking problem as aregression problem. Another approa
h is to redu
e a total order into a set of pref-
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�Figure 1: An Illustration of the update rule.eren
es over pairs [3, 5℄. The �rst 
ase imposes a metri
 on the set of ranking ruleswhi
h might not be realisti
, while the se
ond approa
h is time 
onsuming sin
e itrequires in
reasing the sample size from n to O(n2).In this paper we 
onsider an alternative approa
h that dire
tly maintains a totallyordered set via proje
tions. Our starting point is similar to that of Herbri
h et. al [5℄in the sense that we proje
t ea
h instan
e into the reals. However, our work thendeviates and operates dire
tly on rankings by asso
iating ea
h ranking with distin
tsub-interval of the reals and adapting the support of ea
h sub-interval while learn-ing. In the next se
tion we des
ribe a simple and eÆ
ient online algorithm thatmanipulates 
on
urrently the dire
tion onto whi
h we proje
t the instan
es andthe division into sub-intervals. In Se
. 3 we prove the 
orre
tness of the algorithmand analyze its performan
e in the mistake bound model. We des
ribe in Se
. 4experiments that 
ompare the algorithm to online algorithms for 
lassi�
ation andregression applied to ranking whi
h demonstrate the merits of our approa
h.2 The PRank AlgorithmThis paper fo
uses on online algorithms for ranking instan
es. We are given asequen
e (x1; y1); : : : ; (xt; yt); : : : of instan
e-rank pairs. Ea
h instan
e xt is in Rnand its 
orresponding rank yt is an element from �nite set Y with a total orderrelation. We assume without loss of generality that Y = f1; 2; : : : ; kg with \>"as the order relation. The total order over the set Y indu
es a partial order overthe instan
es in the following natural sense. We say that xt is preferred over xsif yt > ys. We also say that xt and xs are not 
omparable if neither yt > ys noryt < ys. We denote this 
ase simply as yt = ys. Note that the indu
ed partial orderis of a unique form in whi
h the instan
es form k equivalen
e 
lasses whi
h are totallyordered1. A ranking rule H is a mapping from instan
es to ranks, H : Rn ! Y .The family of ranking rules we dis
uss in this paper employs a ve
tor w 2 Rn anda set of k thresholds b1 � : : : � bk�1 � bk = 1. For 
onvenien
e we denote byb = (b1; : : : ; bk�1) the ve
tor of thresholds ex
luding bk whi
h is �xed to1. Given anew instan
e x the ranking rule �rst 
omputes the inner-produ
t between w and x.The predi
ted rank is then de�ned to be the index of the �rst (smallest) thresholdbr for whi
h w � x < br. This type of ranking rules divide the spa
e into parallelequally-ranked regions: all the instan
es that satisfy br�1 < w �x < br are assignedthe same rank r. Formally, given a ranking rule de�ned by w and b the predi
tedrank of an instan
e x is, H(x) = minr2f1;:::;kgfr : w � x � br < 0g. Note that theabove minimum is always well de�ned sin
e we set bk =1.The analysis that we use in this paper is based on the mistake bound model foronline learning. The algorithm we des
ribe works in rounds. On round t the learningalgorithm gets an instan
e xt. Given xt, the algorithm outputs a rank, ŷt = minrfr :w �x� br < 0g. It then re
eives the 
orre
t rank yt and updates its ranking rule bymodifying w and b. We say that our algorithm made a ranking mistake if ŷt 6= yt.1For a dis
ussion of this type of partial orders see [6℄.



Initialize: Set w1 = 0 ; b11; : : : ; b1k�1 = 0; b1k =1 .Loop: For t = 1; 2; : : : ; T� Get a new rank-value xt 2 Rn.� Predi
t ŷt = minr2f1;:::;kgfr : wt � xt � btr < 0g.� Get a new label yt.� If ŷt 6= yt update wt (otherwise set wt+1 = wt ; 8r : bt+1r = btr) :1. For r = 1; : : : ; k � 1 : If yt � r Then ytr = �1Else ytr = 1.2. For r = 1; : : : ; k � 1 : If (wt � xt � btr)ytr � 0 Then � tr = ytrElse � tr = 0.3. Update wt+1  wt + (Pr � tr)xt.For r = 1; : : : ; k � 1 update: bt+1r  btr � � trOutput : H(x) = minr2f1;:::;kgfr : wT+1 � x� bT+1r < 0g.Figure 2: The PRank algorithm.We wish to make the predi
ted rank as 
lose as possible to the true rank. Formally,the goal of the learning algorithm is to minimize the ranking-loss whi
h is de�ned tobe the number of thresholds between the true rank and the predi
ted rank. Usingthe representation of ranks as integers in f1 : : : kg, the ranking-loss after T roundsis equal to the a

umulated di�eren
e between the predi
ted and true rank-values,PTt=1 jŷt � ytj. The algorithm we des
ribe updates its ranking rule only on roundson whi
h it made ranking mistakes. Su
h algorithms are 
alled 
onservative.We now des
ribe the update rule of the algorithm whi
h is motivated by the per-
eptron algorithm for 
lassi�
ation and hen
e we 
all it the PRank algorithm (forPer
eptron Ranking). For simpli
ity, we omit the index of the round when refer-ring to an input instan
e-rank pair (x; y) and the ranking rule w and b. Sin
eb1 � b2 � : : : � bk�1 � bk then the predi
ted rank is 
orre
t if w � x > br forr = 1; : : : ; y � 1 and w � x < br for y; : : : ; k � 1. We represent the above inequali-ties by expanding the rank y into into k � 1 virtual variables y1; : : : ; yk�1. We setyr = +1 for the 
ase w � x > br and yr = �1 for w � x < br. Put another way, arank value y indu
es the ve
tor (y1; : : : ; yk�1) = (+1; : : : ;+1;�1; : : : ;�1) where themaximal index r for whi
h yr = +1 is y�1. Thus, the predi
tion of a ranking rule is
orre
t if yr(w �x� br) > 0 for all r. If the algorithm makes a mistake by ranking xas ŷ instead of y then there is at least one threshold, indexed r, for whi
h the valueof w �x is on the wrong side of br, i.e. yr(w �x� br) � 0. To 
orre
t the mistake, weneed to \move" the values of w �x and br toward ea
h other. We do so by modifyingonly the values of the br's for whi
h yr(w �x�br) � 0 and repla
e them with br�yr.We also repla
e the value of w with w + (P yr)x where the sum is taken over theindi
es r for whi
h there was a predi
tion error, i.e., yr(w � x� br) � 0.An illustration of the update rule is given in Fig 1. In the example, we used theset Y = f1 : : :5g. (Note that b5 = 1 is omitted from all the plots in Fig 1.) The
orre
t rank of the instan
e is y = 4, and thus the value of w � x should fall in thefourth interval, between b3 and b4. However, in the illustration the value of w � xfell below b1 and the predi
ted rank is ŷ = 1. The threshold values b1; b2 and b3 area sour
e of the error sin
e the value of b1; b2; b3 is higher then w � x. To mend themistake the algorithm de
reases b1; b2 and b3 by a unit value and repla
e them withb1�1; b2�1 and b3�1. It also modi�es w to be w+3x sin
ePr:yr(w�x�br)�0 yr = 3.Thus, the inner-produ
t w � x in
reases by 3kxk2. This update is illustrated at themiddle plot of Fig. 1. The updated predi
tion rule is sket
hed on the right hand



side of Fig. 1. Note that after the update, the predi
ted rank of x is ŷ = 3 whi
h is
loser to the true rank y = 4. The pseudo
ode of algorithm is given in Fig 2.To 
on
lude this se
tion we like to note that PRank 
an be straightforwardly 
om-bined with Mer
er kernels [8℄ and voting te
hniques [4℄ often used for improving theperforman
e of margin 
lassi�ers in bat
h and online settings.3 AnalysisBefore we prove the mistake bound of the algorithm we �rst show that it main-tains a 
onsistent hypothesis in the sense that it preserves the 
orre
t order of thethresholds. Spe
i�
ally, we show by indu
tion that for any ranking rule that 
anbe derived by the algorithm along its run, (w1;b1) ; : : : ; (wT+1;bT+1) we havethat btr � : : : � btk�1 for all t. Sin
e the initialization of the thresholds is su
h thatb11 � b12 � : : : � b1k�1, then it suÆ
es to show that the 
laim holds indu
tively. Forsimpli
ity, we write the updating rule of PRank in an alternative form. Let [[�℄℄ be1 if the predi
ate � holds and 0 otherwise. We now rewrite the value of � tr (fromFig. 2) as � tr = ytr[[(wt � xt � btr)ytr � 0℄℄. Note that the values of btr are integers forall r and t sin
e for all r we initialize b1r = 0, and bt+1r � btr 2 f�1; 0;+1g.Lemma 1 (Order Preservation) Let wt and bt be the 
urrent ranking rule,where bt1 � : : : � btk�1, and let (xt; yt) be an instan
e-rank pair fed to PRankon round t. Denote by wt+1 and bt+1 the resulting ranking rule after the update ofPRank, then bt+11 � : : : � bt+1k�1.Proof: In order to show that PRank maintains the order of the thresholds weuse the de�nition of the algorithm for ytr, namely we de�ne ytr = +1 for r < yt andytr = �1 for r � yt. We now prove that bt+1r+1 � bt+1r for all r by showing thatbtr+1 � btr � ytr+1[[(wt � xt � btr+1)ytr+1 � 0℄℄� ytr[[(wt � xt � btr)ytr � 0℄℄ ; (1)whi
h we obtain by substituting the values of bt+1. Sin
e btr+1 � btr and btr ; btr+1 2 Zwe get that the value of btr+1 � btr on the left hand side of Eq. (1) is a non-negativeinteger. Re
all that ytr = 1 if yt > r and ytr = �1 otherwise, and therefore,ytr+1 � ytr. We now analyze two 
ases. We �rst 
onsider the 
ase ytr+1 6= ytr whi
himplies that ytr+1 = �1; ytr = +1. In this 
ase, the right hand-side of Eq. (1) is atmost zero, and the 
laim trivially holds. The other 
ase is when ytr+1 = ytr. Herewe get that the value of the right hand-side Eq. (1) 
annot ex
eed 1. We thereforehave to 
onsider only the 
ase where btr = btr+1 and ytr+1 = ytr. But given these two
onditions we have that ytr+1[[(wt � xt � btr+1)ytr+1 < 0℄℄ and ytr[[(wt � xt � btr)ytr < 0℄℄are equal. The right hand side of Eq. (1) is now zero and the inequality holds withequality.In order to simplify the analysis of the algorithm we introdu
e the following nota-tion. Given a hyperplanew and a set of k�1 thresholds b we denote by v 2 Rn+k�1the ve
tor whi
h is a 
on
atenation ofw and b that is v = (w;b). For brevity we re-fer to the ve
tor v as a ranking rule. Given two ve
tors v0 = (w0;b0) and v = (w;b)we have v0 � v = w0 �w+ b0 � b and kvk2 = kwk2 + kbk2.Theorem 2 (Mistake bound) Let (x1; y1); : : : ; (xT ; yT ) be an input sequen
e forPRank where xt 2 Rn and yt 2 f1 : : : kg. Denote by R2 = maxt kxtk2. Assumethat there is a ranking rule v� = (w�;b�) with b�1 � : : : � b�k�1 of a unit norm that
lassi�es the entire sequen
e 
orre
tly with margin 
 = minr;tf(w� �xt� b�r)ytrg > 0.Then, the rank loss of the algorithm PTt=1 jŷt�ytj, is at most (k � 1)(R2 + 1)=
2.



Proof: Let us �x an example (xt; yt) whi
h the algorithm re
eived on round t.By de�nition the algorithm ranked the example using the ranking rule vt whi
h is
omposed of wt and the thresholds bt. Similarly, we denote by vt+1 the updatedrule (wt+1;bt+1) after round t. That is, wt+1 = wt+(Pr � tr)xt and bt+1r = btr� � trfor r = 1; 2; : : : ; k�1. Let us denote by nt = jŷt�ytj the di�eren
e between the truerank and the predi
ted rank. It is straightforward to verify that nt =Pr j� tr j. Notethat if there wasn't a ranking mistake on round t then � tr = 0 for r = 1; : : : ; k�1, andthus also nt = 0. To prove the theorem we bound Pt nt from above by boundingkvtk2 from above and below. First, we derive a lower bound on kvtk2 by boundingv� � vt+1. Substituting the values of wt+1 and bt+1 we get,v� � vt+1 = v� � vt + k�1Xr=1 � tr �w� � xt � b�r� (2)We further bound the right term by 
onsidering two 
ases. Using the de�nition of� tr from the pseudo
ode in Fig. 2 we need to analyze two 
ases. If (wt �xt�btr)ytr � 0then � tr = ytr. Using the assumption that v� ranks the data 
orre
tly with a marginof at least 
 we get that � tr(w� � xt � b�r) � 
. For the other 
ase for whi
h(wt � xt � btr)ytr > 0 we have � tr = 0 and thus � tr(w� � xt � b�r) = 0. Summingnow over r we get, k�1Xr=1 � tr �w� � xt � b�r� � nt
 : (3)Combining Eq. (2) and Eq. (3) we get v� � vt+1 � v� � vt + nt
. Unfolding thesum, we get that after T rounds the algorithm satis�es, v� � vT+1 � Pt nt
 =
Pt nt. Plugging this result into Cau
hy-S
hwartz inequality, (kvT+1k2kv�k2 ��vT+1 � v��2) and using the assumption that v� is of a unit norm we get the lowerbound, kvT+1k2 � (Pt nt)2 
2.Next, we bound the norm of v from above. As before, assume that an example(xt; yt) was ranked using the ranking rule vt and denote by vt+1 the ranking ruleafter the round. We now expand the values ofwt+1 and bt+1 in the norm of vt+1 andget, kvt+1k2 = kwtk2 + kbtk2 + 2Pr � tr (wt � xt � btr) + (Pr � tr)2kxtk2 +Pr (� tr)2.Sin
e � tr 2 f�1; 0;+1g we have that (Pr � tr)2 � (nt)2 and Pr(� tr)2 = nt and wetherefore get,kvt+1k2 � kvtk2 + 2Xr � tr �wt � xt � btr�+ (nt)2kxtk2 + nt : (4)We further develop the se
ond term using the update rule of the algorithm and get,Xr � tr �wt � xt � btr� =Xr [[(wt � xt � btr)ytr � 0℄℄ �(wt � xt � btr)ytr� � 0 : (5)Plugging Eq. (5) into Eq. (4) and using the bound kxtk2 � R2 we get thatkvt+1k2 � kvtk2 + (nt)2R2 + nt. Thus, the ranking rule we obtain after T roundsof the algorithm satis�es the upper bound, kvT+1k2 � R2Pt(nt)2 +Pt nt. Com-bining the lower bound kvT+1k2 � (Pt nt)2 
2 with the upper bound we have that,(Pt nt)2 
2 � kvT+1k2 � R2Pt(nt)2 +Pt nt. Dividing both sides by 
2Pt nt we�nally get, Xt nt � R2 �Pt(nt)2� = [Pt nt℄ + 1
2 : (6)By de�nition, nt is at most k � 1, whi
h implies that Pt(nt)2 � Pt nt(k � 1) =(k�1)Pt nt. Using this inequality in Eq. (6) we get the desired bound,PTt=1 jŷt�ytj =PTt=1 nt � [(k � 1)R2 + 1℄=
2 � [(k � 1)(R2 + 1)℄=
2 :
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Figure 3: Comparison of the time-averaged ranking-loss of PRank, WH, and MCPon syntheti
 data (left). Comparison of the time-averaged ranking-loss of PRank,WH, and MCP on the Ea
hMovie dataset using viewers who rated and at least 200movies (middle) and at least 100 movies (right).4 ExperimentsIn this se
tion we des
ribe experiments we performed that 
ompared PRank withtwo other online learning algorithms applied to ranking: a multi
lass generalizationof the per
eptron algorithm [2℄, denoted MCP, and the Widrow-Ho� [9℄ algorithmfor online regression learning whi
h we denote by WH. For WH we �xed its learningrate to a 
onstant value. The hypotheses the three algorithms maintain sharesimilarities but are di�erent in their 
omplexity: PRank maintains a ve
tor w ofdimension n and a ve
tor of k � 1 modi�able thresholds b, totaling n + k � 1parameters; MCP maintains k prototypes whi
h are ve
tors of size n, yielding knparameters; WH maintains a single ve
tor w of size n. Therefore, MCP builds themost 
omplex hypothesis of the three while WH builds the simplest.Due to the la
k of spa
e, we only des
ribe two sets of experiments with two di�erentdatasets. The dataset used in the �rst experiment is syntheti
 and was generated ina similar way to the dataset used by Herbri
h et. al. [5℄. We �rst generated randompoints x = (x1; x2) uniformly at random from the unit square [0; 1℄2. Ea
h pointwas assigned a rank y from the set f1; : : : ; 5g a

ording to the following ranking rule,y = maxrfr : 10((x1 � 0:5)(x2 � 0:5)) + � > brg where b = (�1;�1;�0:1; 0:25; 1)and � is a normally distributed noise of a zero mean and a standard deviationof 0.125. We generated 100 sequen
es of instan
e-rank pairs ea
h of length 7000.We fed the sequen
es to the three algorithms and obtained a predi
tion for ea
hinstan
e. We 
onverted the real-valued predi
tions of WH into ranks by roundingea
h predi
tion to its 
losest rank value. As in [5℄ we used a non-homogeneouspolynomial of degree 2, K(x1;x2) = ((x1 � x2) + 1)2 as the inner-produ
t operationbetween ea
h input instan
e and the hyperplanes the three algorithms maintain.At ea
h time step, we 
omputed for ea
h algorithm the a

umulated ranking-lossnormalized by the instantaneous sequen
e length. Formally, the time-averaged lossafter T rounds is, (1=T )PTt jŷt�ytj. We 
omputed these losses for T = 1; : : : ; 7000.To in
rease the statisti
al signi�
an
e of the results we repeated the pro
ess 100times, pi
king a new random instan
e-rank sequen
e of length 7; 000 ea
h time, andaveraging the instantaneous losses a
ross the 100 runs. The results are depi
tedon the left hand side of Fig. 3. The 95% 
on�den
e intervals are smaller then thesymbols used in the plot. In this experiment the performan
e of MPC is 
onstantlyworse than the performan
e of WH and PRank. WH initially su�ers the smallestinstantaneous loss but after about 500 rounds PRank a
hieves the best performan
eand eventually the number of ranking mistakes that PRank su�ers is signi�
antlylower than both WH and MPC.



In the se
ond set of experiments we used the Ea
hMovie dataset [7℄. This datasetis used for 
ollaborative �ltering tasks and 
ontains ratings of movies providedby 61; 265 people. Ea
h person in the dataset viewed a subset of movies from a
olle
tion of 1623 titles. Ea
h viewer rated ea
h movie that she saw using one of6 possible ratings: 0; 0:2; 0:4; 0:6; 0:8; 1. We 
hose subsets of people who viewed asigni�
ant amount of movies extra
ting for evaluation people who have rated atleast 100 movies. There were 7; 542 su
h viewers. We 
hose at random one personamong these viewers and set the person's ratings to be the target rank. We used theratings of all the rest of the people who viewed enough movies as features. Thus,the goal is to learn to predi
t the \taste" of a random user using the user's pastratings as a feedba
k and the ratings of fellow viewers as features. The predi
tionrule asso
iates a weight with ea
h fellow viewer an therefore 
an be seen as learning
orrelations between the tastes of di�erent viewers. Next, we subtra
ted 0:5 fromea
h rating and therefore the possible ratings are �0:5;�0:3;�0:1; 0:1; 0:3; 0:5. Thislinear transformation enabled us to assign a value of zero to movies whi
h have notbeen rated. We fed these feature-rank pairs one at a time, in an online fashion.Sin
e we pi
ked viewer who rated at least 100 movies, we were able to perform atleast 100 rounds of online predi
tions and updates. We repeated this experiment500 times, 
hoosing ea
h time a random viewer for the target rank. The results areshown on the right hand-side of Fig. 3. The error bars in the plot indi
ate 95%
ond�den
e levels. We repeated the experiment using viewers who have seen atleast 200 movies. (There were 1802 su
h viewers.) The results of this experimentare shown in the middle plot of Fig. 3. Along the entire run of the algorithms,PRank is signi�
antly better than WH, and 
onsistently better than the multi
lassper
eptron algorithm, although the latter employs a bigger hypothesis.Finally, we have also evaluated the performan
e of PRank in a bat
h setting, usingthe experimental setup of [5℄. In this experiment, we ran PRank over the trainingdata as an online algorithm and used its last hypothesis to rank unseen test data.Here as well PRank 
ame out �rst, outperforming all the algorithms des
ribed in [5℄.A
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